3. Desmedt–Odlyzko's Attack

Desmedt and Odlyzko's attack is an existential forgery under a chosen-message attack, in which the forger asks for the signature of messages of his choice before computing the signature of a (possibly meaningless) message that was never signed by the legitimate owner of *d*. In the case of Rabin–Williams signatures, it may even happen that the attacker factors *N*, i.e., a total break. The attack only applies if $\mu(m)$ is much smaller than *N* and works as follows:

- 1. Select a bound *B* and let $\mathfrak{P} = \{p_1, \ldots, p_\ell\}$ be the list of all primes less or equal to *B*.
- 2. Find at least $\tau \geq \ell + 1$ messages m_i such that each $\mu(m_i)$ is a product of primes in $\mathfrak{P}.$
- 3. Express one $\mu(m_i)$ as a multiplicative combination of the other $\mu(m_i)$, by solving a linear system given by the exponent vectors of the $\mu(m_i)$ with respect to the primes in \mathfrak{B} .
- 4. Ask for the signatures of the m_i for $i \neq j$ and forge the signature of m_j .

In the following, we assume that *e* is prime; this includes $e = 2$. We let τ be the number of messages m_i obtained at step 2. We say that an integer is B -smooth if all its prime factors are less or equal to *B*. The integers $\mu(m_i)$ obtained at step 2 are therefore *B*-smooth, and we can write for all messages m_i , $1 \le i \le \tau$:

$$
\mu(m_i) = \prod_{j=1}^{\ell} p_j^{v_{i,j}} \tag{1}
$$

To each $\mu(m_i)$, we associate the ℓ -dimensional vector of the exponents modulo e , that is, $V_i = (v_{i,1} \mod e, \ldots, v_{i,\ell} \mod e)$. Since *e* is prime, the set of all ℓ -dimensional vectors modulo *e* forms a linear space of dimension ℓ . Therefore, if $\tau \geq \ell + 1$, one can express one vector, say V_{τ} , as a linear combination of the others modulo *e*, using Gaussian elimination:

$$
V_{\tau} = \Gamma \cdot e + \sum_{i=1}^{\tau-1} \beta_i V_i
$$

for some $\mathbf{\Gamma} = (\gamma_1, \dots, \gamma_\ell) \in \mathbb{Z}^\ell$ and some $\beta_i \in \{0, \dots, e-1\}$. This gives for all $1 \leq j \leq \ell$:

$$
v_{\tau,j} = \gamma_j \cdot e + \sum_{i=1}^{\tau-1} \beta_i \cdot v_{i,j}
$$

Then using (1) , one obtains:

$$
\mu(m_{\tau}) = \prod_{j=1}^{\ell} p_j^{v_{\tau,j}} = \prod_{j=1}^{\ell} p_j^{v_{\tau,j}} = \left(\prod_{j=1}^{\ell} p_j^{v_j}\right)^{\epsilon} \cdot \prod_{j=1}^{\ell} \prod_{i=1}^{\tau-1} p_j^{v_i} \mu(m_{\tau}) = \left(\prod_{j=1}^{\ell} p_j^{v_j}\right)^{\epsilon} \cdot \prod_{i=1}^{\tau-1} \prod_{j=1}^{\ell} p_j^{v_j} \mu(m_{\tau}) = \left(\prod_{j=1}^{\ell} p_j^{v_j}\right)^{\epsilon} \cdot \prod_{i=1}^{\tau-1} \mu(m_i)^{\beta_i}
$$

That is:

$$
\mu(m_{\tau}) = \delta^e \cdot \prod_{i=1}^{\tau-1} \mu(m_i)^{\beta_i}, \text{ where } \delta := \prod_{j=1}^{\ell} p_j^{\gamma_j}
$$
 (2)

Therefore, we see that $\mu(m_\tau)$ can be written as a multiplicative combination of the other $\mu(m_i)$. For RSA signatures, the attacker will ask for the signatures σ_i of $m_1, \ldots, m_{\tau-1}$ and forge the signature σ_{τ} of m_{τ} using the relation:

$$
\sigma_{\tau} = \mu(m_{\tau})^d = \delta \cdot \prod_{i=1}^{\tau-1} \left(\mu(m_i)^d \right)^{\beta_i} = \delta \cdot \prod_{i=1}^{\tau-1} \sigma_i^{\beta_i} \pmod{N}
$$

3.1. *Rabin–Williams Signatures*

For Rabin–Williams signatures ($e = 2$), the attacker may even factor *N*. Let $J(x)$ denote the Jacobi symbol of *x* with respect to *N*. We distinguish two cases. If $J(\delta) = 1$, we have $\delta^{2d} = \pm \delta \mod N$, which gives from (2) the forgery equation:

$$
\mu(m_{\tau})^d = \pm \delta \cdot \prod_{i=1}^{\tau-1} \left(\mu(m_i)^d \right)^{\beta_i} \pmod{N}
$$

If $J(\delta) = -1$, then letting $u = \delta^{2d} \text{ mod } N$ we obtain $u^2 = (\delta^2)^{2d} = \delta^2 \text{ mod } N$, which implies $(u - \delta)(u + \delta) = 0$ mod *N*. Moreover since $J(\delta) = -J(u)$, we must have $\delta \neq \pm u$ mod *N*, and therefore, gcd($u \pm \delta$, *N*) will factor *N*. The attacker can therefore

t 1 2 3 4 5 6 7 8 9 10					
$-\log_2 \rho(t)$ 0.0 1.7 4.4 7.7 11.5 15.6 20.1 24.9 29.9 35.1					

Table 1. The value of Dickman's function for $1 \le t \le 10$.

submit the τ messages for signature, recover $u = \delta^{2d}$ mod N, factor N and subsequently sign any message.²

3.2. *Attack Complexity*

The complexity of the attack depends on the number of primes ℓ and on the probability that the integers $\mu(m_i)$ are p_ℓ -smooth, where p_ℓ is the ℓ th prime. We define $ψ(x, y) = #{v ≤ x, such that v is y – smooth}.$ It is known [22] that, for large *x*, the ratio $\psi(x, \sqrt[x]{x})/x$ is equivalent to Dickman's function defined by:

$$
\rho(t) = \begin{cases}\n1 & \text{if } 0 \le t \le 1 \\
\rho(n) - \int_n^t \frac{\rho(v-1)}{v} dv & \text{if } n \le t \le n+1\n\end{cases}
$$

 $\rho(t)$ is thus an approximation of the probability that a *u*-bit number is $2^{u/t}$ -smooth; Table 1 gives the numerical value of $\rho(t)$ (on a logarithmic scale) for $1 \le t \le 10$. The following theorem [12] gives an asymptotic estimate of the probability that an integer is smooth:

Theorem 1. Let x be an integer and let $L_x[\beta] = \exp(\beta \cdot \sqrt{\log x \log \log x})$. Let to *be an integer randomly distributed between zero and x*^γ *for some* γ *>* 0*. Then for large x, the probability that all the prime factors of t are less than* $L_x[\beta]$ *is given by* L_x $[-\gamma/(2\beta) + o(1)].$

Using this theorem, an asymptotic analysis of Desmedt and Odlyzko's attack is given in [17]. The analysis yields a time complexity of:

$$
L_x[\sqrt{2} + o(1)]
$$

where x is a bound on $\mu(m)$. This complexity is sub-exponential in the size of the integers $\mu(m)$. In practice, the attack is feasible only if the $\mu(m_i)$ is relatively small (e.g., $\langle 200 \rangle$) bits).

² In both cases, we have assumed that the signature is always $\sigma = \mu(m)^d \mod N$, whereas by definition, a Rabin–Williams signature is $\sigma = (\mu(m)/2)^d \mod N$ when $J(\mu(m)) = -1$. A possible work-around consists in discarding such messages, but it is also easy to adapt the attack to handle both cases.