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To verify the signature σ , compute ω = s2 mod N and check that:

µ(m)
?=

⎧
⎪⎪⎨

⎪⎪⎩

ω if ω = 4 mod 8
2 · ω if ω = 6 mod 8
N − ω if ω = 1 mod 8
2 · (N − ω) if ω = 7 mod 8

The following fact shows that the Rabin–Williams signature verification works [41].
In particular, the fact that

( 2
N

)
= −1 ensures that either µ(m) or µ(m)/2 has a Jacobi

symbol equal to 1.

Fact 1. Let N be anRSAmoduluswith p = 3mod 8 and q = 7mod 8. Then
( 2
N

)
= −1

and
(−1
N

)
= 1. Let d = (N − p−q+5)/8. Then for any integer x such that

( x
N

)
= 1, we

have that x2d = x mod N if x is a square modulo N, and x2d = −x mod N otherwise.

3. Desmedt–Odlyzko’s Attack

Desmedt and Odlyzko’s attack is an existential forgery under a chosen-message attack,
in which the forger asks for the signature of messages of his choice before computing the
signature of a (possibly meaningless) message that was never signed by the legitimate
owner of d. In the case of Rabin–Williams signatures, it may even happen that the
attacker factors N , i.e., a total break. The attack only applies if µ(m) is much smaller
than N and works as follows:

1. Select a bound B and let P = {p1, . . . , pℓ} be the list of all primes less or equal
to B.

2. Find at least τ ≥ ℓ + 1 messages mi such that each µ(mi ) is a product of primes
in P.

3. Express one µ(m j ) as a multiplicative combination of the other µ(mi ), by solving
a linear system given by the exponent vectors of the µ(mi ) with respect to the
primes in P.

4. Ask for the signatures of the mi for i ̸= j and forge the signature of m j .

In the following, we assume that e is prime; this includes e = 2. We let τ be the
number of messages mi obtained at step 2. We say that an integer is B-smooth if all its
prime factors are less or equal to B. The integers µ(mi ) obtained at step 2 are therefore
B-smooth, and we can write for all messages mi , 1 ≤ i ≤ τ :

µ(mi ) =
ℓ∏

j=1

p
vi, j
j (1)

To eachµ(mi ), we associate the ℓ-dimensional vector of the exponents modulo e, that is,
Vi = (vi,1 mod e, . . . , vi,ℓ mod e). Since e is prime, the set of all ℓ-dimensional vectors
modulo e forms a linear space of dimension ℓ. Therefore, if τ ≥ ℓ+ 1, one can express
one vector, say Vτ , as a linear combination of the others modulo e, using Gaussian
elimination:
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Vτ = Γ · e +
τ−1∑

i=1

βiVi

for some Γ = (γ1, . . . , γℓ) ∈ Zℓ and some βi ∈ {0, . . . , e − 1}. This gives for all
1 ≤ j ≤ ℓ:

vτ, j = γ j · e +
τ−1∑

i=1

βi · vi, j

Then using (1), one obtains:

µ(mτ ) =
ℓ∏

j=1

p
vτ, j
j =

ℓ∏

j=1

p
γ j ·e+

τ−1∑

i=1
βi ·vi, j

j =

⎛

⎝
ℓ∏

j=1

p
γ j
j

⎞

⎠
e

·
ℓ∏

j=1

τ−1∏

i=1

p
vi, j ·βi
j

µ(mτ ) =

⎛

⎝
ℓ∏

j=1

p
γ j
j

⎞

⎠
e

·
τ−1∏

i=1

⎛

⎝
ℓ∏

j=1

p
vi, j
j

⎞

⎠
βi

=

⎛

⎝
ℓ∏

j=1

p
γ j
j

⎞

⎠
e

·
τ−1∏

i=1

µ(mi )
βi

That is:

µ(mτ ) = δe ·
τ−1∏

i=1

µ(mi )
βi , where δ :=

ℓ∏

j=1

p
γ j
j (2)

Therefore, we see thatµ(mτ ) can be written as a multiplicative combination of the other
µ(mi ). For RSA signatures, the attacker will ask for the signatures σi of m1, . . . ,mτ−1
and forge the signature στ of mτ using the relation:

στ = µ(mτ )
d = δ ·

τ−1∏

i=1

(
µ(mi )

d
)βi = δ ·

τ−1∏

i=1

σ
βi
i (mod N )

3.1. Rabin–Williams Signatures

For Rabin–Williams signatures (e = 2), the attacker may even factor N . Let J(x) denote
the Jacobi symbol of x with respect to N . We distinguish two cases. If J(δ) = 1, we
have δ2d = ±δmod N , which gives from (2) the forgery equation:

µ(mτ )
d = ±δ ·

τ−1∏

i=1

(
µ(mi )

d
)βi

(mod N )

If J(δ) = −1, then letting u = δ2d mod N we obtain u2 = (δ2)2d = δ2 mod N , which
implies (u − δ)(u + δ) = 0mod N . Moreover since J(δ) = − J(u), we must have
δ ̸= ±umod N , and therefore, gcd(u ± δ, N ) will factor N . The attacker can therefore
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Table 1. The value of Dickman’s function for 1 ≤ t ≤ 10.

t 1 2 3 4 5 6 7 8 9 10

− log2 ρ(t) 0.0 1.7 4.4 7.7 11.5 15.6 20.1 24.9 29.9 35.1

submit the τ messages for signature, recover u = δ2d mod N , factor N and subsequently
sign any message.2

3.2. Attack Complexity

The complexity of the attack depends on the number of primes ℓ and on the prob-
ability that the integers µ(mi ) are pℓ-smooth, where pℓ is the ℓth prime. We define
ψ(x, y) = #{v ≤ x , such thatv is y− smooth}. It is known [22] that, for large x , the
ratio ψ(x, t

√
x)/x is equivalent to Dickman’s function defined by:

ρ(t) =

⎧
⎨

⎩

1 if 0 ≤ t ≤ 1

ρ(n) −
∫ t

n

ρ(v − 1)
v

dv if n ≤ t ≤ n + 1

ρ(t) is thus an approximation of the probability that a u-bit number is 2u/t -smooth;
Table 1 gives the numerical value of ρ(t) (on a logarithmic scale) for 1 ≤ t ≤ 10. The
following theorem [12] gives an asymptotic estimate of the probability that an integer is
smooth:

Theorem 1. Let x be an integer and let Lx [β] = exp
(
β · √

log x log log x
)
. Let t

be an integer randomly distributed between zero and xγ for some γ > 0. Then for
large x, the probability that all the prime factors of t are less than Lx [β] is given by
Lx

[
−γ /(2β)+ o(1)

]
.

Using this theorem, an asymptotic analysis of Desmedt and Odlyzko’s attack is given
in [17]. The analysis yields a time complexity of:

Lx [
√
2+ o(1)]

where x is a bound onµ(m). This complexity is sub-exponential in the size of the integers
µ(m). In practice, the attack is feasible only if the µ(mi ) is relatively small (e.g., <200
bits).

2 In both cases, we have assumed that the signature is always σ = µ(m)d mod N , whereas by definition, a
Rabin–Williams signature is σ = (µ(m)/2)d mod N when J(µ(m)) = −1. A possible work-around consists
in discarding such messages, but it is also easy to adapt the attack to handle both cases.


